

Inter-Camera Tracking Based On Fully Unsupervised Online Learning

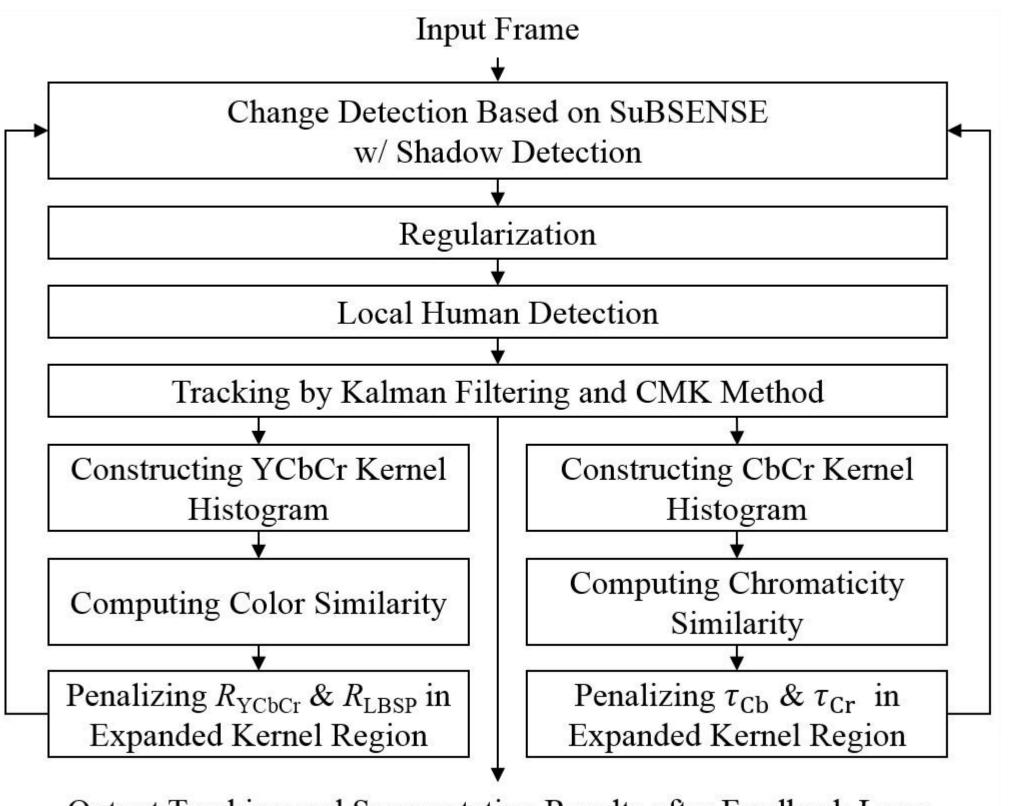
Young-Gun Lee, Zheng Tang, Jenq-Neng Hwang University of Washington, Seattle, WA 98195, USA

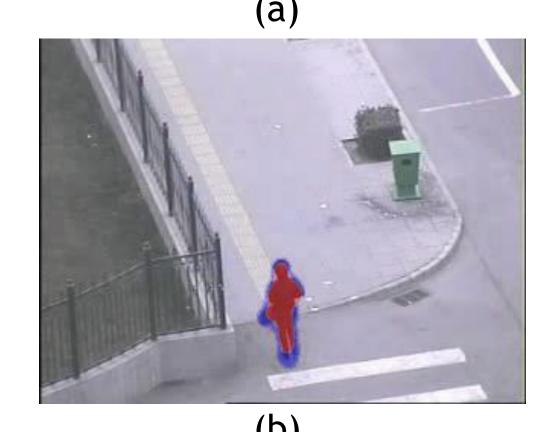
Abstract

Due to the expanding scale of camera networks, multiple camera tracking of human has received higher attention in recent years. In this paper, we present a novel approach to track each human within a single camera and across multiple disjoint cameras. Our framework includes a multi-object tracking and segmentation system, a two-phase feature extractor, and an online-learning-based camera link model estimation. For tracking within a single camera, we apply tracking by segmentation and local object detection with multi-kernel feedback to adaptively improve robustness of the algorithm. In inter-camera tracking, we introduce an effective integration of appearance and context features. Automatically couples are detected, and the couple feature is also integrated with existing features. The proposed algorithm is scalable by a fully unsupervised online learning framework. In our experiments, the proposed method outperforms all the state-of-the-art in the benchmark NLPR MCT dataset.

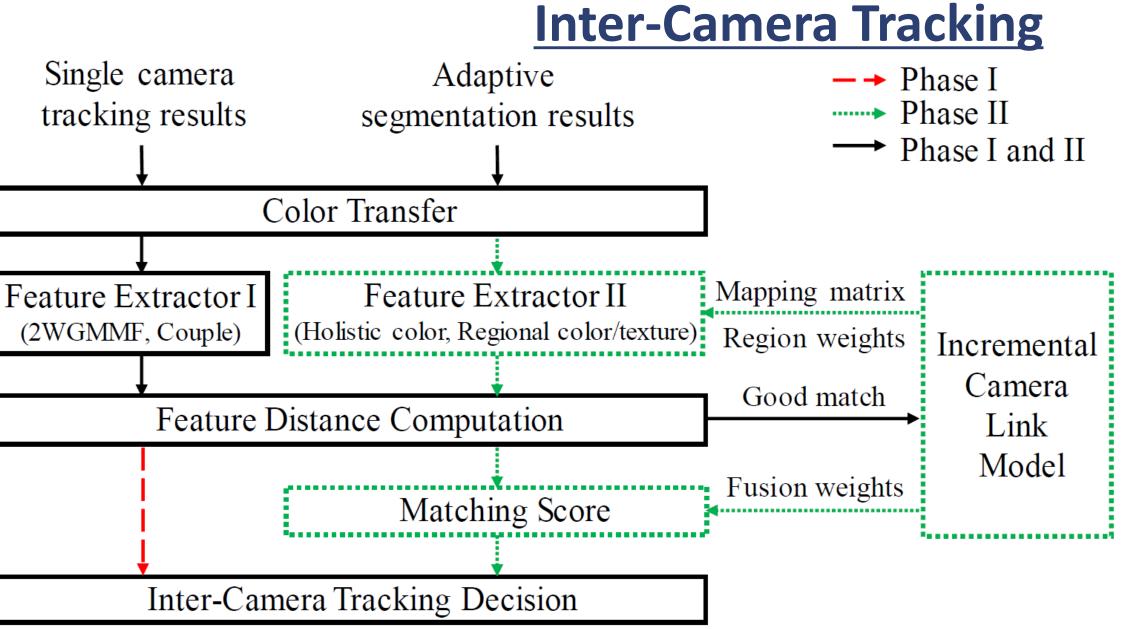
Single-Camera Tracking and Object Segmentation

- Flow diagram of Multi-kernel Adaptive Segmentation and Tracking for SCT & segmentation.
- Comparison of segmentation performance. (a) Segmentation from the preliminary result of SuBSENSE with shadow detection. (b) Segmentation after the application of multi-kernel feedback loops (foreground in red, and detected shadow in blue).



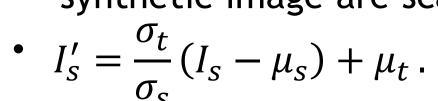


Output Tracking and Segmentation Results after Feedback Loop



Color transfer

RGB color space is transformed to the laB color space and the data points composing the synthetic image are scaled by factors determined by the respective standard deviation.



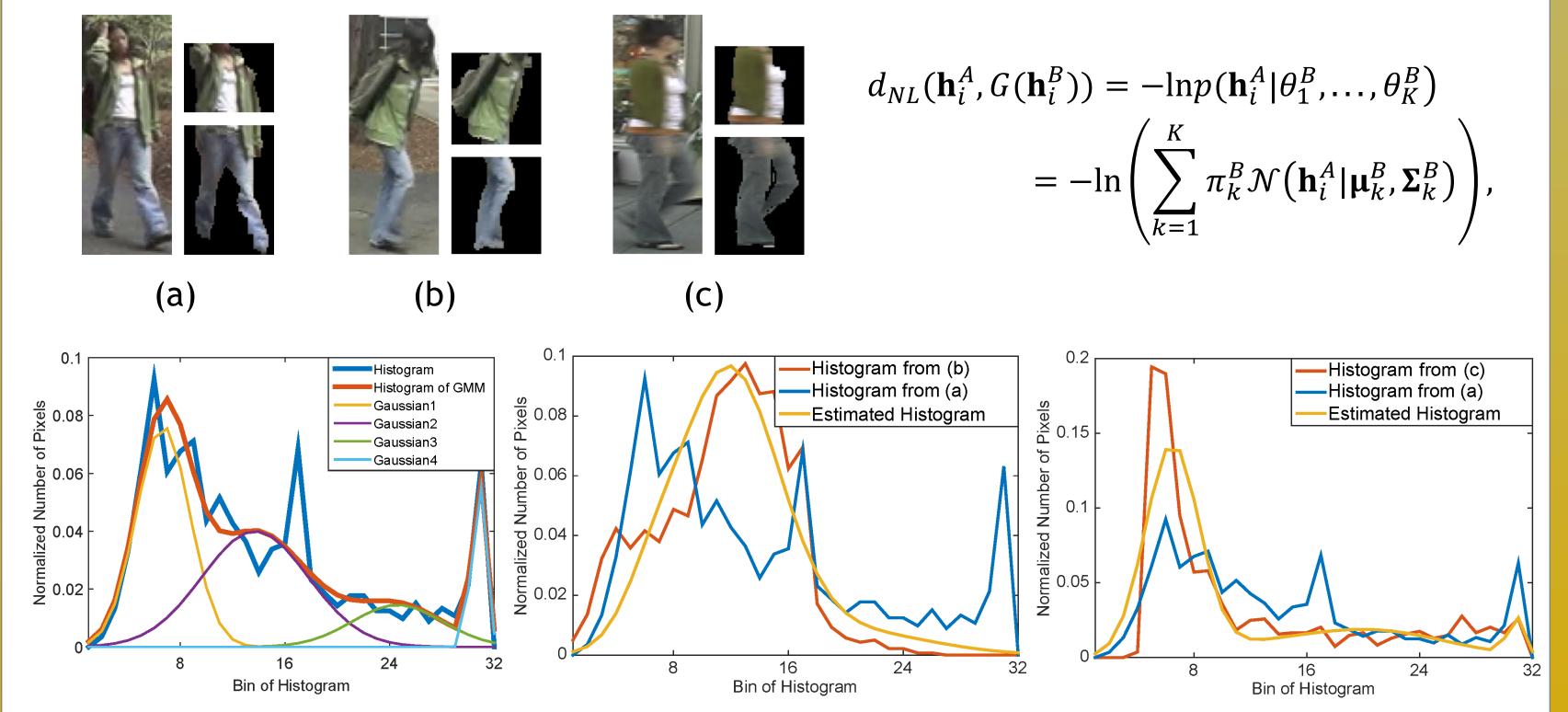
Denotation

Comb1

Comb2

Two-way Gaussian mixture model fitting feature

Main idea of 2WGMMF feature is that main color modes of the same identity in color histogram should be consistent across different viewpoints.



Feature distance: $d_{2WGMMF}(A, B) = d_{NL}(\mathbf{h}_{torso}^A, G(\mathbf{h}_{torso}^B)) + d_{NL}(\mathbf{h}_{legs}^A, G(\mathbf{h}_{legs}^B))$ $+ d_{NL}(\mathbf{h}_{torso}^B, G(\mathbf{h}_{torso}^A)) + d_{NL}(\mathbf{h}_{legs}^B, G(\mathbf{h}_{legs}^A)).$

Regional color and texture features

- The torso part is divided into six regions based on the pre-defined ratios.
- Since a specific region covers different areas of the torso due to different viewpoints, the histogram extracted from one region of the torso can be modeled as a linear combination of the histograms extracted from multiple regions of the torso in the other camera.

 $d_{\text{regional feature}}(A, B)$ $\sum q_k \times d(\mathbf{h}_{map_k}^A, \mathbf{h}_{r_k}^B) + q_7 \times d(\mathbf{h}_{r_7}^A, \mathbf{h}_{r_7}^B),$ where $\mathbf{h}_{map_k}^A = |\mathbf{h}_{r_1}^A \dots \mathbf{h}_{r_6}^A|\mathbf{w}_k$.

Couple feature

- A couple is defined as a pair of person traveling together through an FOV.
- After identifying the same couple across cameras, persons are re-identified.
- $d_{\text{couple identifier}}(AC,BD) = \min(d_{2\text{WGMMF}}(A,B),d_{2\text{WGMMF}}(A,D))$ + min $(d_{2\text{WGMMF}}(C, B), d_{2\text{WGMMF}}(C, D))$.

$$d_{\text{couple}}^{\text{I}}(A,B) = -d_{\text{2WGMMF}}(A,B_{\text{couple}}) = -d_{\text{2WGMMF}}(A,D)$$
$$d_{\text{couple}}^{\text{II}}(A,B) = -\sum_{i=1}^{N} \alpha_{i} d_{feature_{i}}^{Norm}(A,D)$$

Final score

Since the value range of each feature distance is different, min-max normalization and fusion methods are exploited to get the final score.

 $d_{\text{Final}}^{\text{I}}(A,B) = d_{\text{2WGMMF}}(A,B) + d_{\text{couple}}^{\text{I}}(A,B), \qquad d_{\text{Final}}^{\text{II}}(A,B) = \sum_{i=1}^{l} \alpha_i d_{feature_i}^{Norm}(A,B),$ where $d_j = \mu_j^N - \mu_j^P / \sqrt{\left(\sigma_j^N\right)^2 + \left(\sigma_j^P\right)^2}$ $\alpha_j = d_j / \sum_{i=1}^4 d_i$

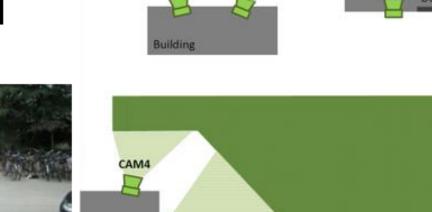
Dataset and evaluation criteria

Dataset 1-2: Outdoor and Indoor Scene

Feature combination

Holistic color, 2WGMMF, regional color/texture, couple

2WGMMF, regional color/texture, couple



Dataset 4: Outdoor Scene

Dataset 4: Outdoor Scene

Feature combination

Holistic color, 2WGMMF, couple

Holistic color, regional color/texture, couple

Evaluation criteria: MCTA = $Detection \times Tracking^{SCT} \times Tracking^{ICT} = SCTA \times Tracking^{ICT}$ $\left(\frac{2 \times Precision \times Recall}{Precision + Recall}\right) \left(1 - \frac{\sum_{t} mme_{t}^{s}}{\sum_{t} tp_{t}^{s}}\right) \left(1 - \frac{\sum_{t} mme_{t}^{c}}{\sum_{t} tp_{t}^{c}}\right)$

Tracking results

Sub- dataset	Evaluation metric	Comb1	Comb2	Comb3	Comb4	USC-Vision [1]	NLPR [2]	Hfutdspmct [3]	CRIPAC-MCT [4]
Dataset1	SCTA	0.6796				0.6448	0.6625	0.4301	0.1752
	Tracking ^{ICT}	0.8851	0.8851	0.8665	0.8789	0.9288	0.6220	0.6534	0.7111
	MCTA	0.6015	0.6015	0.5889	0.5973	0.5989	0.4120	0.2810	0.1246
Dataset2	SCTA	0.7655				0.7358	0.6904	0.4598	0.1636
	Tracking ^{ICT}	0.8842	0.8793	0.8818	0.8768	0.8691	0.6942	0.6122	0.7510
	MCTA	0.6769	0.6732	0.6751	0.6713	0.6260	0.4793	0.2815	0.1075
Dataset3	SCTA	0.6819				0.5476	0.6312	0.1475	0.0971
	Tracking ^{ICT}	0.5461	0.5329	0.5329	0.5000	0.1014	0.2953	0.2432	0.1143
	MCTA	0.3724	0.3634	0.3634	0.3410	0.0555	0.1864	0.0359	0.0111
Dataset4	SCTA	0.8658				0.6262	0.6597	0.2064	0.0720
	Tracking ^{ICT}	0.6270	0.6151	0.5992	0.6071	0.5437	0.4308	0.2944	0.2950
	MCTA	0.5429	0.5326	0.5188	0.5257	0.3404	0.2842	0.0608	0.0213
Average MCTA		0.5484	0.5427	0.5366	0.5338	0.4052	0.3405	0.1648	0.0661

References

Denotation

Comb3

Comb4

[1] Y. Cai and G. Medioni, "Exploring context information for inter-camera multiple target tracking," in Proc. IEEE WACV, 2014, pp. 761-768. [2] L. Cao, W. Chen, X. Chen, S. Zheng, and K. Huang, "An equalized global graphical model-based approach for multi-camera object tracking," arXiv:1502.03532v2, 2016.

[3] "Multi-Camera Object Tracking challenge," [online] http://mct.idealtest.org/index.html. [4] W. Chen, L. Cao, X. Chen, and K. Huang, "A novel solution for multi-camera object tracking," in Proc. IEEE ICIP, 2014, pp. 2329-2333.