

NATION CHIAD TUNG UNIVERSAL DEPARTMENT OF COMPUTER SCIENCE DEPENSION DEPENSION College of Electronic and Electrical Engineering

Camera Self-Calibration from Tracking of Moving Persons

ICPR 2016 Oral Session MoAT3

Zheng Tang¹, Yen-Shuo Lin², Kuan-Hui Lee¹, Jenq-Neng Hwang¹, Jen-Hui Chuang², Zhijun Fang³

¹ University of Washington, United States;
 ² National Chiao Tung University, Taiwan;
 ³ Shanghai University of Engineering Science, China

UNIVERSITY of WASHINGTON

- Introduction
- System Overview
- Computation of Vanishing Points
 - Object Tracking and Head/Foot Localization
 - Vanishing Points Estimation
- Self-Calibration by Optimization
- Experimental Results
- Conclusion

- Introduction
- System Overview
- Computation of Vanishing Points
 - Object Tracking and Head/Foot Localization
 - Vanishing Points Estimation
- Self-Calibration by Optimization
- Experimental Results
- Conclusion

 \mathbf{W} university of washington

Introduction

- Categories of camera calibration
 - Calibration using calibrated templates
 - Self-calibration/auto-calibration
 - Static scene structures
 - Object motion -> Moving-person tracking

Introduction

• Self-calibration from tracking of moving persons [Lv et al., 2002]

Original assumptions:

- (1) Central principal point
- (2) Unit aspect ratio
- (3) Zero skew

Challenges:

- (1) How to find the accurate V_{γ} and L_{H} ?
- (2) How can we optimize all camera
- parameters (relax original assumptions)?

- Introduction
- System Overview
- Computation of Vanishing Points
 - Object Tracking and Head/Foot Localization
 - Vanishing Points Estimation
- Self-Calibration by Optimization
- Experimental Results
- Conclusion

System Overview

- Introduction
- System Overview
- Computation of Vanishing Points
 - Object Tracking and Head/Foot Localization
 - Vanishing Points Estimation
- Self-Calibration by Optimization
- Experimental Results
- Conclusion

System Overview

 \mathbf{W} university of washington

Object Tracking and Segmentation Based on MAST Multiple-kernel Adaptive Segmentation and Tracking Segmentation result

Object merging

Tracking result

 \mathbf{W} university of washington

Object Tracking and Segmentation Based on MAST Multiple-kernel Adaptive Segmentation and Tracking Segmentation result

Motivation

Tracking result

Output Tracking Result after Feedback Loop

Head/Foot Localization

- Introduction
- System Overview
- Computation of Vanishing Points
 - Object Tracking and Head/Foot Localization
 - Vanishing Points Estimation
- Self-Calibration by Optimization
- Experimental Results
- Conclusion

System Overview

Vertical Vanishing Point (V_{γ}) Estimation Based on Mean Shift Clustering

- Disadvantage of RANSAC
 - Failure when the number of outliers is significantly large
- Proposed method
 - Mean shift clustering among all the candidate points of V_{γ}
 - Choosing the mean point of the largest cluster as the estimated V_{γ}

Horizon Line (L_{μ}) Estimation **Based on Laplace Linear Regression**

S.¹

in whic

 $\mathbf{A}_{eq} =$

- Disadvantage of RANSAC
 - Setting of threshold parameter for inliers
- Proposed method
 - Formulating as convex optimization by Laplace linear regression

$$p(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \text{Laplace}(\mathbf{y}|\mathbf{w}^{T}\mathbf{x})$$

$$\propto \exp(-|\mathbf{y} - \mathbf{w}^{T}\mathbf{x}|)$$

$$\min_{\mathbf{w}, \mathbf{r}} \sum_{i} r_{i} = \min_{\mathbf{w}, \mathbf{r}^{+}, \mathbf{r}^{-}} \sum_{i} (r_{i}^{+} + r_{i}^{-})$$
s. t. $r_{i}^{+} \ge 0, r_{i}^{-} \ge 0, \mathbf{w}^{T}\mathbf{x}_{i} + r_{i}^{+} - r_{i}^{-} = y_{i}$

$$\lim_{\theta} \mathbf{f}^{T}\theta \text{ s. t. } \mathbf{A}\theta \le \mathbf{b}, \mathbf{A}_{eq}\theta = \mathbf{b}_{eq}, \mathbf{l} \le \theta \le \mathbf{u}$$
which $\theta = (\mathbf{w}, \mathbf{r}^{+}, \mathbf{r}^{-}), \mathbf{f} = [\mathbf{0}, \mathbf{1}, \mathbf{1}], \mathbf{A} = [], \mathbf{b} = [],$
 $q = [\mathbf{x}, \mathbf{I}, -\mathbf{I}], \mathbf{b}_{eq} = \mathbf{y}, \mathbf{l} = [-\infty\mathbf{1}, \mathbf{0}, \mathbf{0}] \text{ and } \mathbf{u} = [].$

18

- Introduction
- System Overview
- Computation of Vanishing Points
 - Object Tracking and Head/Foot Localization
 - Vanishing Points Estimation
- Self-Calibration by Optimization
- Experimental Results
- Conclusion

System Overview

Estimation of Distribution Algorithm (EDA)

Consider $\arg\min_{x} f(x)$

- 1. Randomly generate *R* samples.
- 2. Calculate $f(x_i)$ of each sample, and sort the results.
- 3. Use the best *N* results to generate a *pdf* with normal distribution.
- 4. If stopping criterion is not met,
 use the *pdf* to generate new *R* samples, jump to 2.

In this example, R = 12, N = 6

until stopping criterion is met

Optimization of Camera Parameters by EDA

Estimation of Multivariate Normal Algorithm–global [Larrauaga et al., 2002]

- Extending from univariate EDA, for multivariate scenario (8 parameters)
 - Using multivariate normal density function as *pdf*
- Each projection matrix formed by a set of camera parameters is regarded as a sample.
- Using reprojection error on the ground plane as the evaluation
- Stopping criterion
 - Change of reprojection error between generations is small enough
 - Number of generations is too large

Advantages of the Proposed Formulation

- Optimizing all camera parameters simultaneously by EMNA_global
- Relaxing original assumptions on intrinsic camera parameters by allowing them to be optimized within given ranges
- Advantages of EDA [Hauschild *et al.*, 2011]
 - Ability to adapt their operators to the structure of the problem
 - Prior knowledge exploitation
 - Reduced memory requirements
 - Implementation of parallel computation

- Introduction
- System Overview
- Computation of Vanishing Points
 - Object Tracking and Head/Foot Localization
 - Vanishing Points Estimation
- Self-Calibration by Optimization
- Experimental Results
- Conclusion

Experimental Results

- 3 captured video sequences
 - Length: ~ 1 min 30 sec
 - Resolution: 640 * 480
 - Frame rate: 10 fps
 - Ground truth: Extracted using linear method based on 52, 52, and 38 measured 3-D points
- 1 video sequence from EPFL dataset
 - Length: 3 min
 - Resolution: 360 * 288
 - Frame rate: 25 fps
 - Ground truth: Extracted using Tsai's method

Experimental Results

Seq. #	f _x (ріх.)	f _y (ріх.)	с _х (ріх.)	с _у (ріх.)	roll (deg.)	pitch (deg.)	yaw (deg.)	μ _{err} (pix.)
1. Ground Truth	731.3880	728.2518	322.1298	237.2676	-3.1371	16.2676	-78.3065	N/A
1. Method in [6]	611.5239	611.5239	320.0000	240.0000	5.7439	22.4758	-64.9974	11.7954
1. Method in [10]	638.2676	638.2676	320.0000	240.0000	3.8800	23.2010	-71.8167	8.7750
1. Proposed w/o EDA	738.7650	738.7650	320.0000	240.0000	5.0689	17.6076	-79.0154	6.0133
1. Proposed	730.9167	735.9371	322.9955	236.1948	-5.0345	17.4224	-79.1491	2.50E-5
2. Ground Truth	731.3880	728.2518	322.1298	237.2676	-1.8887	11.0081	-68.7126	N/A
2. Method in [6]	618.7858	618.7858	320.0000	240.0000	2.3671	8.7161	-71.5302	4.9334
2. Method in [10]	647.4640	647.4640	320.0000	240.0000	1.8874	9.8994	-71.7033	5.0624
2. Proposed w/o EDA	679.6617	679.6617	320.0000	240.0000	1.7928	10.7818	-70.3027	4.6445
2. Proposed	727.6335	728.1606	321.4372	241.1506	-2.2546	10.3345	-70.3032	3.12E-5
3. Ground Truth	731.3880	728.2518	322.1298	237.2676	-0.3459	18.3846	-63.8778	N/A
3. Method in [6]	606.8088	606.8088	320.0000	240.0000	-0.8635	13.2525	-67.1697	2.1670
3. Method in [10]	662.9474	662.9474	320.0000	240.0000	-0.2164	22.4663	-57.6830	0.5403
3. Proposed w/o EDA	719.8882	719.8882	320.0000	240.0000	0.2693	17.4219	-64.7125	0.3398
3. Proposed	720.6649	729.5090	319.8556	240.6065	-0.2658	17.2493	-64.7081	1.17E-4
4. Ground Truth	437.2689	437.8792	173.7693	142.7878	1.5466	14.1153	-54.5257	N/A
4. Method in [6]	406.8041	406.8041	180.0000	144.0000	-0.2633	22.4482	-63.5813	0.5051
4. Method in [10]	432.0973	432.0973	180.0000	144.0000	-0.2062	20.8494	-45.6322	0.4321
4. Proposed w/o EDA	440.5366	440.5366	180.0000	144.0000	-0.4297	16.2182	-55.8775	0.1858
4. Proposed	442.4795	440.9664	176.2516	142.1498	0.4313	15.9846	-55.6434	2.74E-5

Experimental Results

- Introduction
- System Overview
- Computation of Vanishing Points
 - Object Tracking and Head/Foot Localization
 - Vanishing Points Estimation
- Self-Calibration by Optimization
- Experimental Results
- Conclusion

Conclusion

- We proposed a robust single camera self-calibration method based on moving persons tracking.
- Contribution (1): Combining the state-of-the-art change detection (SuBSENSE) and tracking (MAST) to generate accurate head/foot localization
- **Contribution (2)**: Introducing mean shift clustering and Laplace linear regression to the estimation of vanishing points
- **Contribution (3)**: formulating the problem of camera parameters optimization by EDA that can relax the assumptions on unknown intrinsic parameters.

Thank you! Q&A