

Multiple-kernel Adaptive Segmentation and Tracking (MAST) for Robust Object Tracking

ICASSP 2016 IVMSP-L2: Video Tracking

Zheng Tang, Jenq-Neng Hwang, University of Washington, United States; Yen-Shuo Lin, Jen-Hui Chuang, National Chiao Tung University, Taiwan

UNIVERSITY of WASHINGTON

- Introduction
- System Overview
- General Segmentation and Tracking
- Similarity Computation and Feedback Loop
- Experimental Results
- Conclusion

- Introduction
- System Overview
- General Segmentation and Tracking
- Similarity Computation and Feedback Loop
- Experimental Results
- Conclusion

- Intelligent video surveillance
 - Customer analysis
 - Anomaly detection
 - Suspect tracking
- Video object segmentation
 - It includes background subtraction and shadow detection.
- Video object tracking
 - It provides the information about the location of a tracked object in time.

- Many object tracking approaches are dependent on foreground segmentation mask.
 - Example: In Kalman filter tracking, time variant matrix can consist of position, size and velocity of each foreground blob.

C. Chu, J. Hwang, S. Wang, and Y. Chen, "Human Tracking by Adaptive Kalman Filtering and Multiple Kernels Tracking with Projected Gradients," *Proc. ACM/IEEE Int. Conf. Distributed Smart Cameras*, 2011.

• Object merging

Segmentation result

Tracking result

Segmentation result

Motivation

Tracking result

- Introduction
- System Overview
- General Segmentation and Tracking
- Similarity Computation and Feedback Loop
- Experimental Results
- Conclusion

System Overview

Output Tracking Result after Feedback Loop

- The segmentation
 block can be
 substituted by any
 method based on
 thresholding.
- The tracking block can be substituted by any method based on segmentation results.

- Introduction
- System Overview
- General Segmentation and Tracking
- Similarity Computation and Feedback Loop
- Experimental Results
- Conclusion

System Overview

Background Subtraction (Otsu Thresholding)

Shadow Removal (YCbCr)

Identifier of shadow point

$$SInd(x,y) = \begin{cases} 1, & \left(\alpha \leq Y^{I}(x,y)/Y^{B}(x,y) \leq \beta\right) \\ & \wedge \left(\left|Cb^{I}(x,y) - Cb^{B}(x,y)\right| \leq \tau_{Cb}\right) \\ & \wedge \left(\left|Cr^{I}(x,y) - Cr^{B}(x,y)\right| \leq \tau_{Cr}\right) \\ 0, & otherwise \end{cases}$$

- I: Current frame
- B: Background
- $-\alpha$, β : Threshold parameters for Y channel
- τ_{Cb} : Threshold parameter for Cb channel
- τ_{Cr} : Threshold parameter for Cr channel

Kalman Filter Tracking with Constrained Multiple-Kernel (CMK) Tracking

Bounding Box Change Restriction

- Some constraints are imposed to prevent sudden change of the bounding boxes caused by noise or segmentation failure.
- CMK tracking is applied when the segmented foreground blob is not reliable.
- The constraints include:
 - limited size-change ratio
 - limited width-change ratio
 - limited height-change ratio

- Introduction
- System Overview
- General Segmentation and Tracking
- Similarity Computation and Feedback Loop
- Experimental Results
- Conclusion

System Overview

Output Tracking Result after Feedback Loop

Constructing Kernel Histograms

Current frame

- Two histograms are built for each kernel
 - YCbCr histogram for computing penalty for background subtraction
 - CbCr histogram for computing penalty for shadow removal
- Gaussian kernel function weight: $w = \frac{1}{2\pi\sigma_x\sigma_y}e^{-\frac{(x-x_c)}{2\sigma_x^2}}e^{-\frac{(y-y_c)}{2\sigma_y^2}}$

Background

Computing Color Similarity (Bhattacharyya Similarity)

 The color similarity and chromaticity similarity are computed by the reciprocals of Bhattacharyya distances between the corresponding kernel histograms:

$$colorSimi = \frac{1}{\sum \sqrt{hist_{y_{CbCr}}^{I}(x, y) \Box hist_{y_{CbCr}}^{B}(x, y)}}$$
$$chromSimi = \frac{1}{\sum \sqrt{hist_{cbCr}^{I}(x, y) \Box hist_{cbCr}^{B}(x, y)}}$$

- I: Current frame
- B: Background

Penalizing Thresholds and Expanding Kernel Region

- Otsu's threshold in background subtraction or the chromaticity thresholds τ_{Cb} and τ_{Cr} in shadow removal will be penalized by multiplying (1 pw).
- The kernel region to be re-segmented is expanded by a factor of (1 + pw/2).

Penalizing Thresholds and Expanding Kernel Region

• The penalty weight is computed using a fuzzy Gaussian function:

- *simi*: color similarity or chromaticity similarity
- simiThres: threshold for the corresponding similarity
- *simiMax*: upper limit for the similarity

- Introduction
- System Overview
- General Segmentation and Tracking
- Similarity Computation and Feedback Loop
- Experimental Results
- Conclusion

Experimental Results of Segmentation

Quantitative comparison of MAST system to several state-of-theart methods on seven measures in the *shadow* scenario of CVPR 2014 Change Detection challenge

	Recall	Spec	FPR	FNR	PWC	Prec	F
SuBSENSE [7]	0.9419	0.9920	0.0080	0.0581	1.0120	0.8646	0.8986
IUTIS-3 [12]	0.9478	0.9914	0.0086	0.0522	1.0410	0.8585	0.8984
GMM [13]	0.7960	0.9871	0.0129	0.2040	2.1951	0.7156	0.7370
CP3 [14]	0.7840	0.9832	0.0168	0.2160	2.5175	0.6539	0.7037
MAST	0.8679	0.9864	0.0136	0.1321	1.8906	0.7249	0.7884
TP: True Positive EPR (False Positive Rate): FP / (FP + TN)							
FP: False Positive FNR (False Negative Rate): FN / (TP + FN)							
FN: False Negative PWC (Percentage of Wrong Classifications):							
TN: True Negative $100 * (FN + FP) / (TP + FN + FP + TN)$							

Recall: TP / (TP + FN)

Spec (Specificity): TN / (TN + FP)

Precision: TP / (TP + FP)

F (F-Measure): (2 * Precision * Recall) / (Precision + Recall)

N. Goyette, P. M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, "Changedetection.net: A New Change Detection Benchmark Dataset," *IEEE Conf. Computer Vision and Pattern Recognition Workshops*, pp. 1-8, June 2012.

Experimental Results of Tracking

Comparison of average errors of tracking in terms of pixels on two video sequences, *TwoEnterShop2cor* and *ThreePastShop2cor*, in CAVIAR Dataset

Average error	MAST	Chu's method	SuBSENSE + Kalman filter tracking
TwoEnterShop2cor	10.06	26.72	17.27
ThreePastShop2cor	9.75	10.74	14.07
Overall	10.18	18.73	15.67

Average error: the distance of the centers of mass between experimental result and the ground truth in pixel

Experimental Results of Tracking

Representative frames of tracking results on two video sequences in CAVIAR Dataset

CAVIAR: Context Aware Vision using Image-based Active Recognition, EC founded CAVIAR project/IST 2001 37540, http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

Experimental Results of Tracking

Comparison of average errors of tracking in terms of pixels on our two video sequences (video #1 and video #2)

Average error	MAST	Chu's method	SuBSENSE + Kalman filter tracking
video #1	17.88	18.26	18.90
video #2	10.30	16.10	15.95
Overall	14.09	17.18	17.43

Average error: the distance of the centers of mass between experimental result and the ground truth in pixel

Demo of Video #1 rame Foreground

Current frame MAST

Å

SuBSENSE + Kalman filter tracking

- Introduction
- System Overview
- General Segmentation and Tracking
- Similarity Computation and Feedback Loop
- Experimental Results
- Conclusion

Conclusion

- We proposed an adaptive segmentation and tracking system based on multiple kernels.
- The purpose is to robustly track objects when they have similar color or chromaticity with the background area.
- It is shown that MAST system can improve the performance of tracking while keeping favorable segmentation results especially when dealing with object merging problem.
- The complete demo videos can be viewed on: <u>http://allison.ee.washington.edu/thomas/mast/</u>

Thank you! Q&A