

Joint Multi-view People Tracking and Pose Estimation for 3D Scene Reconstruction

Zheng Tang, Renshu Gu, Jenq-Neng Hwang Information Processing Lab, Department of Electrical Engineering University of Washington

11111111

Introduction

- Multi-view 3D scene reconstruction
 - 3D multiple object tracking
 - 3D human pose estimation
- 3D Multiple Object Tracking
 - Object detection + data association
- 3D Human Pose Estimation
 - Deriving 3D location of each body joint point in time

Introduction

Left hand occluded by his own body

- Challenges •
 - Occlusion with other objects
 - Occlusion by background
 - Self-occlusion
 - Variation in different viewing perspectives
 - Ground plane estimation / camera calibration

Overview

Multi-view Object Tracking

- Object detection by YOLO v2 [Redmon, et al. CVPR 2017]
- Tracklets formed by Kalman-filter-based tracking $\tau = \{ (a_j^c, g_j^c, r_j^c, t_j^c) : j = 1, 2, ..., |\tau|, c = 1, 2, ..., C \}$
- Goal: $G = \{T_i \leftarrow \tau_j^c, \forall i, \forall j, \forall c\}$
- Solution:
 - Maximizing posterior/minimizing energy by MCMC

 $p(G|I) \propto \exp[-E(G,I)]$

$$E(G,I) = \sum_{t} \left(E_t^{\text{app}} + \lambda_g E_t^{\text{geo}} + \lambda_r E_t^{\text{pos}} \right)$$

T: notation of trajectories τ : notation of tracklets C: number of cameras a_j^C : adaptive appearance model g_j^C : geometry information r_j^C : estimated 3D human pose t_j^C : time stamp E_t^{app} : energy for appearance E_t^{geo} : energy for geometry E_t^{pos} : energy for pose λ 's: regularization parameters

Adaptive Appearance Modeling

- Concept
 - Combination of $w \times h$ pixel models
 - A history of N observed feature values at each pixel p
- Feature space: RGB (colortransformed) + LBP
- Construction
 - Normalization & colortransformation
 - Gaussian spatial weighted learning rate

•
$$\alpha(p) = \exp\left[-\frac{\|p-p_c\|_2^2}{2(w^2+h^2)}\right]$$

• p_c – center of mass

$a_{j}^{c} = \left\{a_{j,1}^{c}(p), a_{j,2}^{c}(p) \dots, a_{j,N}^{c}(p)\right\}$

- (a) RGB images
- (b) LBP images
- (c) Color-transferred images
- (d) Normalized bounding boxes with ellipse masks
- (e) (Averaged) appearance models (color

components only)

Adaptive Appearance Modeling

Comparison

$$a_{j}^{u} = \left\{ a_{j,1}^{u}(p), a_{j,2}^{u}(p) \dots, a_{j,N}^{u}(p) \right\}$$

- Appearance model a_j^u in camera view u
- Detected bounding box i_k^v in camera view v (color-transformed)

- Matching/similarity score:
$$s_{j,k}^{u,v} = \frac{\sum_{p} \left[\# \left\{ \left\| i_k^v(p) - a_{j,n}^c(p) \right\|_2 < \epsilon_a, \forall n < N \right\} \right]}{N \cdot w \cdot h}$$

- ϵ_a Maximum feature distance threshold
- Energy for appearance affinity using two-way comparison

$$-E_t^{\text{app}} = \sum_i \sum_{u,v} \frac{1}{s_{j,k}^{u,v} + s_{k,j}^{v,u}}, T_i \leftarrow \tau_j^u, \tau_k^v$$

T: notation of trajectories τ : notation of tracklets

Geometry Information

- Constitution
 - $-g_j^c = \left(l_j^c, d_j^c, v_j^c, b_j^c\right)$
 - $-l_j^c$: Predicted 3D ground location in the global coordinate system
 - d_j^c : Depth to the camera c
 - v_j^c : Visibility
 - The percentage of visible area when an object is occluded by other(s)
 - $-b_j^c$: Whether the bounding box is attached to a frame border
- Energy for geometry

$$-E_t^{\text{geo}} = \sum_i \sum_{u,v} \left[\left\| l_j^u - l_k^v \right\|_2 \cdot \frac{\min\{v_j^u, v_k^v\} \cdot b_j^u \cdot b_k^v}{\max\{d_j^u, d_k^v\}} \right], T_i \leftarrow \tau_j^u, \tau_k^v$$

Feedback Loops

- Feedback from pose estimation to multi-view tracking
 - $-r_i^c$ The feedback of 3D human joint points
 - Energy for pose/action attributes

•
$$E_t^{\text{pos}} = \sum_i \sum_{u,v} \left[\left\| r_j^u - r_k^v \right\|_2 \cdot \frac{\min\{v_j^u, v_k^v\} \cdot b_j^u \cdot b_k^v}{\max\{d_j^u, d_k^v\}} \right], T_i \leftarrow \tau_j^u, \tau_k^v$$

- Feedback from multi-view tracking to pose estimation
 - Optimum camera view selection in each frame

$$-c_t^* = \arg \max_{\forall c \le C} \frac{v_t^c \cdot b_t^c}{d_t^c}$$

C: number of cameras d_t^c : depth v_t^c : visibility b_t^c : whether attached to frame border

Hierarchical 3D Pose Estimation

- Select the optimum view c_t^* for human pose estimation.
- Utilize state-of-the-art 2D pose estimation^[Cao et al., CVPR 2018].
- Hierarchy
 - Torso estimation in the person's coordinates (PC)
 - Upper limb estimation
 in the shoulder local
 coordinates (SLC)
 - Lower limb estimation in the *elbow local coordinates* (ELC)

Hierarchical 3D Pose Estimation

- Torso pose estimation in the PC
 - P4P problem based on a human model prior

$$-P_{1} = \left(\frac{L_{s}}{2}, \frac{L_{t}}{2}, 0\right), P_{2} = \left(-\frac{L_{s}}{2}, \frac{L_{t}}{2}, 0\right), P_{3} = \left(\frac{L_{h}}{2}, -\frac{L_{t}}{2}, 0\right), P_{4} = \left(-\frac{L_{h}}{2}, -\frac{L_{t}}{2}, 0\right)$$

- Limb estimation in the ELC and SLC
 - Wrist coordinates in ELC: $P_w^{\text{ELC}} = \mathbf{R}_l^Y \mathbf{R}_l^X [0 \ L_l \ 0]^T$
 - Elbow coordinates in SLC: $P_e^{\text{SLC}} = \mathbf{R}_u^Z \mathbf{R}_u^Y \mathbf{R}_u^X [0 \ L_u \ 0]^T$
 - Wrist coordinates in SLC: $P_w^{\text{SLC}} = \mathbf{R}_u^Y \mathbf{R}_u^X (P_w^{\text{ELC}} + [0 \ L_u \ 0]^T)$
 - Wrist/elbow coordinates in PC
 - $P_e^{\text{PC}} = P_e^{\text{SLC}} + [X_s, Y_s, Z_s]^T$

•
$$P_w^{\text{PC}} = P_w^{\text{SLC}} + [X_s, Y_s, Z_s]^T$$

$$\begin{split} & L_l/L_u: \text{length of lower/upper arm} \\ & \theta_l^X/\theta_l^Y/\theta_u^X/\theta_u^Y/\theta_u^Z: \text{angles to be estimated} \\ & \mathbf{R}_l^X/\mathbf{R}_l^Y/\mathbf{R}_u^X/\mathbf{R}_u^Y/\mathbf{R}_u^Z: \text{rotation matrices} \\ & P_s^{\text{PC}} = [X_s, Y_s, Z_s]: \text{shoulder coordinates in PC} \end{split}$$

Hierarchical 3D Pose Estimation

- Limb estimation using optimization
 - Minimization of reprojection errors solved by Powell's conjugate direction method^[Powell, Comput. J. 1964]

$$-f\left(\theta_{u}^{X},\theta_{u}^{Y},\theta_{u}^{Z},\theta_{l}^{X},\theta_{l}^{Y}\right) = \lambda_{e} \|p_{e} - \widetilde{p_{e}}\|_{2} + \lambda_{w} \|p_{w} - \widetilde{p_{w}}\|_{2}$$

- p_e/p_w : back projected P_e^{PC}/P_w^{PC}
- $\widetilde{p_e}/\widetilde{p_w}$: predictions from 2D pose estimation
- $-\lambda_e < \lambda_w$: regularization parameters

- Evaluation on EPFL benchmark^[Berclaz et al., TPAMI 2011]
 - The passageway sequence: 4 views, 11 objects, 25 fps, 360x288
 - CLEAR metrics^[Bernardin et al., EURASIP J. 2008]: Multiple Object Detection Accuracy (MODA), Detection Precision (MODP), Tracking Accuracy (MOTA) and Tracking Precision (MOTP)

the EPFL benchmark							
Method	MODA(%)	MODP(%)	MOTA(%)	MOTP(%)			
Ours	61.04	73.13	60.26	72.26			
HTC [5]	43.75	67.11	43.75	67.11			
KSP [2]	40.46	58.88	40.46	57.24			
POM [3]	32.57	62.50	32.57	60.86			

 Table 1. Quantitative comparison of multi-view object tracking on the EPFL benchmark

Bold entries indicate the best results in the corresponding columns.

- Evaluation on Human3.6M benchmark [lonescu et al., TPAMI 2014]
 - The walking sequence: 4 views, 1 object, 50 fps, 1000x1002
 - Metrics: Average 3D distance between the ground truths and the estimated joint points
 - Conclusion: The effectiveness of optimum-view selection is verified

Table 2. Quantitative comparison of 31	D pose estimation on the
Human3.6Mbenchmark	(unit: mm)

Multi-	Camera	Camera	Camera	Camera
view	#0	#1	#2	#3
99.7	132.5	115.1	113.2	137.1

Conclusion

- 3D scene reconstruction combining multi-view object tracking and 3D human pose estimation
- Multi-view object tracking using appearance, geometry and pose/action attributes
- 3D human pose estimation using hierarchical optimization
- Feedback loops between tracking and pose estimation
- Successful evaluation on two benchmark datasets