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Object Tracking

• Single-target / visual object tracking (VOT)
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[Chu et al., TMM’13]



Object Tracking

• Single-target / visual object tracking (VOT)

• Multiple object tracking (MOT)

6

[Chu et al., TMM’13] [Tang et al., IEEE Access’19]



Object Tracking

• Tracking by detection

7

[Breitenstein et al., ICCV’09]



Object Tracking

• Tracking by detection

• Tracking by segmentation

8

[Wang et al., ICCV’09][Breitenstein et al., ICCV’09]



Object Tracking

• Online tracking
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online tracking



Object Tracking

• Online tracking

• Offline tracking
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Object Tracking

• Human-based tracking

11

[Tang et al., IEEE Access’19]



Object Tracking

• Human-based tracking

• Vehicle-based tracking

12

[Tang et al., CVPR’19][Tang et al., IEEE Access’19]



Object Tracking

• Single-view object tracking

13
[Tang et al., ICME’18]



Object Tracking

• Single-view object tracking

• Multi-view / cross-view object tracking

14
[Tang et al., ICME’18]



Object Tracking

• Challenges

– Object occlusion

– Grouping of objects

15

[Unsplash]



Object Tracking

• Challenges

– False negatives in 

detection (tracking 

by detection)

– False positives in 

detection (tracking 

by detection)

16

[Yao et al., CVPR’12]



Object Tracking

• Challenges

– Object merging 

(tracking by 

segmentation) 
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[Tang et al., ICASSP’16]



Object Tracking

• Tracking in 2D

• Tracking in 3D

18

[Tang et al., ICPR’16]



Camera Calibration

𝑢, 𝑣, 1 𝑇~𝐏 × 𝑋, 𝑌, 𝑍, 1 𝑇

Image plane

CCS: camera 

coordinate system

WCS: world 

coordinate system
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[Peng et al., Pattern 

Recognition’09]

projection matrix

𝐏 = 𝐊 ∙ 𝐑|𝐭



Camera Calibration

𝑢, 𝑣, 1 𝑇~𝐏 × 𝑋, 𝑌, 𝑍, 1 𝑇

𝐏 = 𝐊 ∙ 𝐑|𝐭

𝐊 =
𝒇𝒖 𝒔 𝒄𝒖
0 𝒇𝒗 𝒄𝒗
0 0 1

Image plane

CCS: camera 

coordinate system

WCS: world 

coordinate system
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[Peng et al., Pattern 

Recognition’09]

projection matrix

intrinsic parameter matrix



Camera Calibration

𝑢, 𝑣, 1 𝑇~𝐏 × 𝑋, 𝑌, 𝑍, 1 𝑇

𝐏 = 𝐊 ∙ 𝐑|𝐭

𝐊 =
𝒇𝒖 𝒔 𝒄𝒖
0 𝒇𝒗 𝒄𝒗
0 0 1

𝐭 =

𝒕𝑿
𝒕𝒀
𝒕𝒁

Image plane

CCS: camera 

coordinate system

WCS: world 

coordinate system
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[Peng et al., Pattern 

Recognition’09]

projection matrix

intrinsic parameter matrix

translation 

matrix



Camera Calibration

𝑢, 𝑣, 1 𝑇~𝐏 × 𝑋, 𝑌, 𝑍, 1 𝑇

𝐏 = 𝐊 ∙ 𝐑|𝐭

𝐊 =
𝒇𝒖 𝒔 𝒄𝒖
0 𝒇𝒗 𝒄𝒗
0 0 1

𝐭 =

𝒕𝑿
𝒕𝒀
𝒕𝒁

𝐑Z =
cos 𝜸 −sin 𝜸 0

sin 𝜸 cos 𝜸 0
0 0 1

𝐑 = 𝐑Z𝐑Y𝐑X

𝐑X =

1 0 0
0 cos 𝜷 −sin 𝜷

0 sin 𝜷 cos 𝜷

𝐑Y =
cos 𝜶 0 −sin 𝜶

0 1 0
sin 𝜶 0 cos 𝜶

Image plane

CCS: camera 

coordinate system

WCS: world 

coordinate system
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[Peng et al., Pattern 

Recognition’09]

projection matrix

intrinsic parameter matrix

rotation matrix

translation 

matrix



Camera Calibration

𝑢, 𝑣, 1 𝑇~𝐏 × 𝑋, 𝑌, 𝑍, 1 𝑇

𝐏 = 𝐊 ∙ 𝐑|𝐭

𝐊 =
𝒇𝒖 𝒔 𝒄𝒖
0 𝒇𝒗 𝒄𝒗
0 0 1

𝐭 =
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𝒕𝒀
𝒕𝒁

𝐑Z =
cos 𝜸 −sin 𝜸 0

sin 𝜸 cos 𝜸 0
0 0 1

𝐑 = 𝐑Z𝐑Y𝐑X

𝐑X =

1 0 0
0 cos 𝜷 −sin 𝜷

0 sin 𝜷 cos 𝜷

𝐑Y =
cos 𝜶 0 −sin 𝜶

0 1 0
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Image plane

CCS: camera 

coordinate system

WCS: world 

coordinate system
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[Peng et al., Pattern 

Recognition’09]

projection matrix

intrinsic parameter matrix

rotation matrix

translation 

matrix

11 parameters to estimate: 

𝑓𝑢, 𝑓𝑣, 𝑐𝑢, 𝑐𝑣, 𝑠, 𝛾, 𝛼, 𝛽, 𝑡𝑋, 𝑡𝑌 and 𝑡𝑍



Camera Calibration
• Calibration using 

calibrated templates

– Cube

24



Camera Calibration
• Calibration using 

calibrated templates

– Cube

• Self-calibration

– Static scene structures

• Manhattan world 

assumption (MWA)
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Camera Calibration
• Calibration using 

calibrated templates

– Cube

• Self-calibration

– Static scene structures

• Manhattan world 

assumption (MWA)

– Object motion, e.g., 

tracking of walking 

humans

26



Camera Calibration

27

• Self-calibration from human tracking

[Lv et al., ICPR’02]



Camera Calibration

28

• Self-calibration from human tracking

• Challenges

– Noise

– Assumptions (only 7 of the 11 

parameters can be estimated)

• Central principal point

• Unit aspect ratio

• Zero skew

– Distortion

[Lv et al., ICPR’02]

[Mohedano et al., ICIP’10]



Camera Calibration

29

𝐤 = 𝑘1, 𝑘2, 𝑘3
𝑇

radial distortion coefficients

𝑢′ = 𝑢 1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6

𝑣′ = 𝑣 1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6

s. t. , 𝑟2 = 𝑢2 + 𝑣2

𝑢′, 𝑣′𝑢, 𝑣

𝑢, 𝑣 𝑢′, 𝑣′

[Bersoft Image Measurement]

[MathWorks]



Camera Calibration
• Visual odometry for a moving camera

30
[Avi Singh's blog]



Pose Estimation

• Pose estimation in 2D

31

[Chen et al., CVPR’17]



Pose Estimation

• Pose estimation in 2D

• Pose estimation in 3D

32

[Chen et al., CVPR’17]



Pose Estimation

• One-stage (end-to-end) 3D pose estimation

33

CNN
F

C

3D Pose

Image

• Limitations

– Prone to overfitting

– Relative 3D pose

[Iqbal et al., ECCV’18]



Pose Estimation

• One-stage (end-to-end) 3D pose estimation

• Two-stage 3D pose estimation

34

CNN
F

C

3D Pose

Image

regressionCNN
F

C

3D Pose2D Pose

• Limitations

– Prone to overfitting

– Relative 3D pose

[Iqbal et al., ECCV’18]



Pose Estimation

• Challenges

– Self-occlusion

35

[Jacques et al., ICIP’13]



Pose Estimation

• Challenges

– Projection ambiguity

36

[Iqbal et al., ECCV’18]



Pose Estimation

• Challenges

– Ambiguity between objects

37

[Pishchulin et al., CVPR’16]



Outline

38

• ESTHER: Evolutionary Self-calibration from Tracking of Humans for 

Enhancing Robustness

• MOANA: Modeling of Object Appearance by Normalized Adaptation

• 2EPOCH: Two-step Evolutionary Pose Optimization for Camera and Humans

• Extension to multi-view 3D scene reconstruction



Outline
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• ESTHER: Evolutionary Self-calibration from Tracking of Humans for 

Enhancing Robustness

• MOANA: Modeling of Object Appearance by Normalized Adaptation

• 2EPOCH: Two-step Evolutionary Pose Optimization for Camera and Humans

• Extension to multi-view 3D scene reconstruction
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Camera Self-calibration

40

Input video frame Radial distortion correction Camera self-calibration

2D tracking 3D tracking based on 

calibration
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Camera Self-calibration

41
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Camera Self-calibration

42
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Camera Self-calibration

43

background

area

• MAST: Multi-kernel 

Adaptive Segmentation 

and Tracking

Re-segmentation 

around the object 

region with 

lower 

thresholds

Segmentation results

Tracking results

[Tang et al., ICASSP’16]



Camera Self-calibration

• MAST for tracking by segmentation

44
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Camera Self-calibration

45



46

Camera Self-calibration

46

• Head/foot localization



47

Camera Self-calibration

47
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Camera Self-calibration

48

• 𝑉∞ estimation based on mean shift clustering

– Limitation of RANSAC

• Cannot handle large number of outliers

– Proposed method

• Mean shift clustering 

for all candidates

• Locating the mean 

point of the largest 

cluster

𝑉∞
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Camera Self-calibration

49

• 𝐿∞ estimation based on Laplace linear regression

– Limitation of RANSAC

• Threshold parameter for inliers

– Proposed method

• Formulation as Laplace 

linear regression

Laplace 𝐯|𝐰𝑻𝐮 ∝ exp − 𝐯 − 𝐰𝑻𝐮

Gaussian 𝐯|𝐰𝑻𝐮 ∝ exp − 𝐯 − 𝐰𝑻𝐮
2

[Machine Learning: A 

Probabilistic Perspective]

𝐮, 𝐯 : Input candidate points

𝒘: Parameters to be estimated
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Camera Self-calibration

50
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Camera Self-calibration

51

• Estimation of Distribution Algorithm (EDA)

1.Randomly generate R samples.

In this example, R = 12, N = 6

2.Calculate          of each sample, 

and sort the results.

)( ixf

3.Use the best N results to generate 

a PDF with normal distribution.

4. If stopping criterion is not met, 

use  the PDF to generate new R

samples, jump to 2.

…

until stopping criterion is met

Objective function: arg min
𝒙

𝑓(𝑥)
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Camera Self-calibration

52

• Sample： Projection matrix 𝐏 formed by a 

set of 11 camera parameters

• PDF： 11-variate normal density function

• Stopping criterion: Changing ratio 

between generations smaller than threshold

• Objective function: Reprojection error 

(Distance between projected points and 

grid lines)

𝐏∗ = arg min
𝐏∈Rng𝐏

E 𝑑𝑖,𝑗
𝑋 + 𝑑𝑖,𝑗

𝑌

s. t. , 𝑑𝑖,𝑗
𝑋 = 𝑙𝑗

𝑋, 𝑝𝑖,𝑗 2
, 𝑑𝑖,𝑗

𝑌 = 𝑙𝑖
𝑌, 𝑝𝑖,𝑗 2
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Camera Self-calibration

53
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Camera Self-calibration

54

• Sample ： Vector 𝐤 formed by 3 radial 

distortion coefficients

• PDF： 3-variate normal density 

function

• Stopping criterion: Changing ratio 

between generations smaller than 

threshold

• Objective function: Relative human height 

variance

𝐤∗ = arg min
𝐤∈Rng𝐤

E ∆𝐻𝑜,𝑡
2

𝐻𝑜,𝑡: Estimated 3D height of object 𝑜 at time 𝑡

𝐻𝑜: Average 3D height of object 𝑜 along time

s. t. , ∆𝐻𝑜,𝑡=
𝐻𝑜,𝑡 −𝐻𝑜

𝐻𝑜
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Camera Self-calibration

55
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Camera Self-calibration

56

• Calibration 

results on 

VPTZ, EPFL & 

MOTChallenge

Seq. # & Method
∆𝑓

(pix.)

∆𝑐𝑢
(pix.)

∆𝑐𝑣
(pix.)

∆𝛾
(deg.)

∆𝛽
(deg.)

∆𝑡𝑍
(mm)

1 - ESTHER 121.5 23.3 12.7 1.64 0.39 50

1 - Tang et al., ICPR’16 124.6 19.2 16.0 1.82 1.17 78

1 - Brouwers et al., ECCV’16 179.0 43.9 14.8 1.14 0.22 62

1 - Liu et al., BMVC’11 347.0 43.9 14.8 N/A N/A N/A

1 - Liu et al., WACV’13 229.0 43.9 14.8 N/A N/A N/A

1 - Wu et al., ISVC’07 251.9 43.9 14.8 8.68 3.94 N/A

1 - Lv et al., ICPR’02 382.7 43.9 14.8 15.01 5.47 N/A

2 - ESTHER 126.5 15.1 13.7 2.61 1.57 97

2 - Tang et al., ICPR’16 126.8 19.0 11.2 2.90 1.18 115

2 - Brouwers et al., ECCV’16 265.0 41.2 18.0 0.27 0.33 790

2 - Wu et al., ISVC’07 362.0 41.2 18.0 6.45 2.64 N/A

2 - Lv et al., ICPR’02 520.3 41.2 18.0 8.93 3.98 N/A

3 - ESTHER 11.5 4.5 2.9 2.78 2.07 116

3 - Tang et al., ICPR’16 13.1 5.3 2.8 3.49 1.75 112

3 - Brouwers et al., ECCV’16 43.0 11.5 9.6 2.91 0.63 520

3 - Wu et al., ISVC’07 28.6 11.5 9.6 7.30 3.04 N/A

3 - Lv et al., ICPR’02 34.6 11.5 9.6 11.69 2.07 N/A

4 - ESTHER 52.2 13.8 6.0 2.46 1.45 294

4 - Tang et al., ICPR’16 51.8 12.0 7.9 1.84 1.75 327

4 - Führ et al., TCSVT’14 52.0 59.8 5.4 N/A N/A N/A

4 - Wu et al., ISVC’07 60.5 59.8 5.4 2.77 1.92 N/A

4 - Lv et al., ICPR’02 89.6 59.8 5.4 7.56 3.29 N/A

[Fleuret et al., TPAMI’08]

[Possegger et al., CVWW’12]

[Leal-Taixé et al., arXiv’15]



• Radial distortion correction results on VPTZ & 

MOTChallenge

57

Camera Self-calibration

57

Seq. # & Method 𝑘1 𝑘2
1 - Ground truth -0.374 0.159

1 - ESTHER -0.383 0.176

1 - ESTHER (MWA) -0.346 0.119

2 - Ground truth -0.365 0.131

2 - ESTHER -0.327 0.117

2 - ESTHER (MWA) -0.479 0.198

5 - Ground truth -0.602 4.702

5 - ESTHER -0.595 4.730

5 - ESTHER (MWA) -0.579 4.685

Orig.

GT

ESTHER

ESTHER

(MWA)

Line segments for MWA



• Demonstration of tracking in 3D

58

Camera Self-calibration

58

Object 

tracking 

(in 2D) 

Object 

segmentation 

(w/ region of 

interest) 

Object tracking (in 3D) via camera self-calibration



Outline
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• ESTHER: Evolutionary Self-calibration from Tracking of Humans for 

Enhancing Robustness

• MOANA: Modeling of Object Appearance by Normalized Adaptation

• 2EPOCH: Two-step Evolutionary Pose Optimization for Camera and Humans

• Extension to multi-view 3D scene reconstruction
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Adaptive Appearance Modeling

60

2D 

tracking

3D 

tracking

(top view)

Adaptive 

appearance 

models

Color Texture Edge
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Adaptive Appearance Modeling

61



• Construction of adaptive appearance model

62

Adaptive Appearance Modeling

62

Feature maps Normalized feature maps

Segmentation masks Adaptive appearance models along time



• Update of adaptive appearance model
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Adaptive Appearance Modeling

63



• Cross-matching

64

Adaptive Appearance Modeling

64

𝑖: Index for a target

𝑗: Index for an observation

𝒪𝑗: Observation

𝒪𝑖: Prediction from target

𝑃𝑗: Observed 3D location

𝑃𝑖: Predicted 3D location

𝑓𝑗: Appearance features of 

an observation

𝐦𝑖: Appearance model of a 

target



• Re-identification

65

Adaptive Appearance Modeling

65

𝑖: Index for a target

𝑗: Index for an observation

𝑡𝑗: Current time

𝑡𝑖′: Disappeared time

𝒪𝑗: Observation

𝒪𝑖: Prediction from target

𝑃𝑗: Observed 3D location

𝑃𝑖: Predicted 3D location

𝑓𝑗: Appearance features of an 

observation

𝐦𝑖: Appearance model of a 

target



• MOTChallenge 2015 3D benchmark

– Evaluation metrics

66

Adaptive Appearance Modeling

66

[Leal-Taixé et al., arXiv’15]

Measure Better Perfect Description

Avg Rank ↓ 1 This is the rank of each tracker averaged over all present 

evaluation measures.

MOTA ↑ 100 % Multiple Object Tracking Accuracy. This measure 

combines three error sources: false positives, missed 

targets and identity switches.

MOTP ↑ 100 % Multiple Object Tracking Precision. The misalignment

between the annotated and the predicted object locations.

MT ↑ 100 % Mostly tracked targets. The ratio of ground-truth 

trajectories that are covered by a track hypothesis for at 

least 80% of their respective life span.

ML ↓ 0 % Mostly lost targets. The ratio of ground-truth trajectories 

that are covered by a track hypothesis for at most 20% of 

their respective life span.

FP ↓ 0 The total number of false positives.

FN ↓ 0 The total number of false negatives (missed targets).

ID Sw. ↓ 0 The total number of identity switches. 

Frag ↓ 0 The total number of times a trajectory is fragmented (i.e. 

interrupted during tracking).

Hz ↑ Inf. Processing speed (in frames per second) on the benchmark.



• MOTChallenge 2015 3D benchmark
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Adaptive Appearance Modeling

67

[Leal-Taixé et al., arXiv’15]



• Demo on MOTChallenge 2015 3D benchmark

68

Adaptive Appearance Modeling

68Public detections from Deformable Part Model [Felzenszwalb et al., CVPR’08] 



• Demo on MOTChallenge 2015 3D benchmark

69

Adaptive Appearance Modeling

69Public detections from Deformable Part Model [Felzenszwalb et al., CVPR’08] 



Outline
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• ESTHER: Evolutionary Self-calibration from Tracking of Humans for 

Enhancing Robustness

• MOANA: Modeling of Object Appearance by Normalized Adaptation

• 2EPOCH: Two-step Evolutionary Pose Optimization for Camera and Humans

• Extension to multi-view 3D scene reconstruction
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3D Pose Estimation

71

3D body joint points 

on human skeleton
Virtual anatomy 

through AR
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3D Pose Estimation

72
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3D Pose Estimation

73

• 2D human pose estimation [Cao et al., CVPR’17]
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3D Pose Estimation

74

• Visual odometry [Nistér et al., CVPR’04]
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3D Pose Estimation

75

• 3D pose estimation by two-step EDA

• Sample ： 6 camera 

parameters for

rotation and 

translation

• PDF： 6-variate 

normal density 

function

• Objective function: 

Reprojection error of 

18 joint points
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3D Pose Estimation

76

• 3D pose estimation by two-step EDA

• Sample ： 6 camera 

parameters for

rotation and 

translation

• PDF： 6-variate 

normal density 

function

• Objective function: 

Reprojection error of 

18 joint points

• Sample ： Root-relative 

depths of 18 joint 

points

• PDF： 18-variate 

normal density function

• Objective function: 

Weighted sum of

1. Spatial constancy loss

2. Temporal constancy 

loss

3. Body “flatness” loss

4. Joint angle loss
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3D Pose Estimation

77

• Root-relative depths for human pose optimization
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3D Pose Estimation

78

• Spatial constancy for human pose optimization

[ArchieMD Inc.]
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3D Pose Estimation

79

• Temporal constancy for human pose optimization

𝑡𝑡 − Δ
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3D Pose Estimation

80

• Body flatness for human pose optimization
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3D Pose Estimation

81

• Joint angle constraints 

for human pose 

optimization
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3D Pose Estimation

82

• Reprojection error for camera pose optimization

𝐏 = 𝐊 ∙ 𝐑𝑡|𝐭𝑡
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3D Pose Estimation

83

• Demo on people with small movement [ArchieMD Inc.]



• Demo on people with large movement

84

3D Pose Estimation

84

[Weinzaepfel

et al., 

arXiv’16]
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3D Pose Estimation

85

• Demo of multi-object 3D pose estimation [YouTube]



Outline
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• ESTHER: Evolutionary Self-calibration from Tracking of Humans for 

Enhancing Robustness

• MOANA: Modeling of Object Appearance by Normalized Adaptation

• 2EPOCH: Two-step Evolutionary Pose Optimization for Camera and Humans

• Extension to multi-view 3D scene reconstruction
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3D Scene Reconstruction

87

Multi-view

2D tracking

3D 

tracking

(top view)

2D pose 

estimation

3D scene 

reconstruction
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3D Scene Reconstruction
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3D Scene Reconstruction

• 2D tracking in 

each camera 

view

• Multi-view 3D 

tracking based on 

data association 

with visual and 

semantic 

attributes
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3D Scene Reconstruction
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3D Scene Reconstruction

• Cross-view tracking results on EPFL

Method MODA(%) MODP(%) MOTA(%) MOTP(%)

Ours 61.04 73.13 60.26 72.26

Xu et al., CVPR’16 43.75 67.11 43.75 67.11

Berclaz et al., TPAMI’11 40.46 58.88 40.46 57.24

Fleuret et al., TPAMI’08 32.57 62.50 32.57 60.86

MODA (Multiple Object Detection 

Accuracy): The accuracy considering two 

error sources:  false positives and  false 

negatives/missed targets

MODP (Multiple Object Detection Precision): 

The precision of alignment between the 

annotated and the  predicted  bounding  boxes

[Fleuret et al., TPAMI’08]

MOTA (Multiple Object Tracking Accuracy): 

The accuracy considering three error sources:  

false positives,  false negatives/missed targets 

and  identity  switches

MOTP (Multiple Object Tracking Precision): 

The precision of alignment between the 

annotated and the  predicted  bounding  boxes
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3D Scene Reconstruction

• Demo for soccer analytics



Conclusion
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• 3D scene reconstruction

– Camera self-calibration from walking humans

– Adaptive appearance modeling for 3D tracking

– Two-step evolutionary 3D pose estimation

– Multi-view scene reconstruction
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