ELECTRICAL & COMPUTER ENGINEERING

Robust Video Object Tracking via Camera Self-calibration Ph.D. Dissertation Defense Zheng (Thomas) Tang

Committee:

Prof. Jenq-Neng Hwang (Chair, ECE) Prof. Kenneth P. Bube (GSR, Mathematics) Prof. Linda G. Shapiro (CSE & ECE) Prof. Ming-Ting Sun (ECE) Prof. Fa-Long Luo (ECE & Micron Technology) 101111111111

\mathbf{W} UNIVERSITY of WASHINGTON

Introduction

Multi-view 2D tracking 0 N 2. -10 -10

2D pose estimation

3D tracking (top view)

3D scene reconstruction

[Tang et al., ICME'18]

Introduction

• Single-target / visual object tracking (VOT)

[[]Chu et al., TMM'13]

- Single-target / visual object tracking (VOT)
- Multiple object tracking (MOT)

[Chu et al., TMM'13]

[Tang et al., IEEE Access'19]

• Tracking by detection

[Breitenstein et al., ICCV'09]

- Tracking by detection
- Tracking by segmentation

[Breitenstein et al., ICCV'09]

[Wang et al., ICCV'09]

• Online tracking

- Online tracking
- Offline tracking

• Human-based tracking

[Tang et al., IEEE Access'19]

- Human-based tracking
- Vehicle-based tracking

[Tang et al., IEEE Access'19]

[Tang et al., CVPR'19]

• Single-view object tracking

[Tang et al., ICME'18]

- Single-view object tracking
- Multi-view / cross-view object tracking

[Tang et al., ICME'18]

- Challenges
 - Object occlusion
 - Grouping of objects

[Unsplash]

- Challenges
 - False negatives in detection (tracking by detection)
 - False positives in detection (tracking by detection)

[Yao et al., CVPR'12]

Object Tracking Segmentation results

- Challenges
 - Object merging (tracking by segmentation)

Tracking results

- Tracking in 2D
- Tracking in 3D

[Tang et al., ICPR'16]

20

- Calibration using calibrated templates
 - Cube

- Calibration using calibrated templates
 - Cube
- Self-calibration
 - Static scene structures
 - Manhattan world assumption (MWA)

- Calibration using calibrated templates
 - Cube
- Self-calibration
 - Static scene structures
 - Manhattan world assumption (MWA)
 - Object motion, *e.g.*,
 tracking of walking
 humans

• Self-calibration from human tracking

• Self-calibration from human tracking

[Bersoft Image Measurement]

[MathWorks]

\mathbf{W} UNIVERSITY of WASHINGTON

Camera Calibration

• Visual odometry for a moving camera

Applications			Mon Jun 8 7:17 PM					•)) 🙃	* 8	ڻ 🖡
×		~/Copy/Work/UGP-	2/forGitHub/mono_vo_w	vo_scale/src/visodo.cpp	- Sublime Text 2 (UNREG	GISTERED)				
File Edit Selecti	ion Find View Goto Tools Project	Preferences Help								
2015-06-08-mo	pnocular-vo.md × visodo.cpp	× Ikdemo.cpp	× main.cpp	× _config	i.yml × 20:	15-05-25-visual-od	lometry-full.md ×			
			build:	Jvo		۹ ۲				
177 178 // a 179 180 181 // 182 f 183 f 184 1 185 } 186 187 pre 188 pre 189 int 190 int 191 int 192 cir 193 int 192 cir 193 int 196 put 197 198 ims 199 int 197 200 201 wai 200 201 wai 200 201 cout 203 } 204 clock 206 clock 207 cout 208 210 //cou 211 cur 121 cur	<pre>redetection is trigg (prevFeatures.size() byzanz //cout << "Number of 0 upgraded //cout << "triggerringNeed to ge featureDetection(prevAfter this featureDetection(prevAfter this precessing t x = int(t_f.at<dout processing processing processing processing processing frintf(text, "Coordina avisingheB trext(traj, text, texavisingheB trext(traj, text, texavisingheB trext(traj, text, texavisingheB show("Road facing caavisingheB show("Road facing caavisingheB show("Trajectory", t itKey(1); k_t end = clock(); le elapsed_secs = double(end - 1 << "Total time taken: " << elap ut << R_f << endl; ut << R_f << endl; m 0; m</dout </pre>	<pre>bit2RGB: make , 1 newly installed t 84.6 kB of archiv operation, 701 kB //ppa.launchpad.ne edomtrustyubuntu1 [6 kB in 0s (177 kB previously unselect atabase 391523 to unpack/byzan ayzanz (0.3.1-ppafo triggers for man-0 byzanz (0.3.1-ppa t</pre>	_site , 0 to remove and es. of additional dis t/fossfreedom/byz 84.6 kB] //s) ed package byzanz files and directo z_0.3.1-ppafossfr ssfreedomtrustyub or-icon-theme (0. b (2.6.7.1-1ubunt issfreedomtrustyu p-2/forGitHub/mon P-2/forGitHub/mon P-2/forGitHub/mon P-2/forGitHub/mon P-2/forGitHub/mon P-2/forGitHub/mon	html.version	x build: /vo used. ty/main byzanz amd nstalled.) u1_amd64.deb ild\$ ild\$ ild\$./vo ild\$./vo	() (64 0.3.1- ())				
					8			10000000	110100C	Shirt A.

[Avi Singh's blog]

• Pose estimation in 2D

[Chen et al., CVPR'17]

- Pose estimation in 2D
- Pose estimation in 3D

• One-stage (end-to-end) 3D pose estimation

- One-stage (end-to-end) 3D pose estimation
- Two-stage 3D pose estimation

- Challenges
 - Self-occlusion

[Jacques *et al.*, ICIP'13]

• Challenges

- Projection ambiguity

[Iqbal et al., ECCV'18]
Pose Estimation

- Challenges
 - Ambiguity between objects

[Pishchulin et al., CVPR'16]

Outline

- ESTHER: <u>Evolutionary Self-calibration from Tracking of Humans for</u> <u>Enhancing Robustness</u>
- MOANA: Modeling of Object Appearance by Normalized Adaptation
- **2EPOCH**: <u>Two</u>-step <u>Evolutionary Pose Optimization for Camera and Humans</u>
- Extension to multi-view 3D scene reconstruction

Outline

- ESTHER: Evolutionary Self-calibration from Tracking of Humans for Enhancing Robustness
- MOANA: Modeling of Object Appearance by Normalized Adaptation
- **2EPOCH**: <u>Two</u>-step <u>Evolutionary Pose Optimization for Camera and Humans</u>
- Extension to multi-view 3D scene reconstruction

Input video frame

Radial distortion correction

Camera self-calibration

2D tracking

3D tracking based on calibration

• MAST: <u>M</u>ulti-kernel <u>A</u>daptive <u>S</u>egmentation and <u>T</u>racking

[Tang et al., ICASSP'16]

Segmentation results

Tracking results

• MAST for tracking by segmentation

• Head/foot localization

- V_{∞} estimation based on mean shift clustering
 - Limitation of RANSAC
 - Cannot handle large number of outliers
 - Proposed method
 - Mean shift clustering for all candidates
 - Locating the mean point of the largest cluster

- L_{∞} estimation based on Laplace linear regression
 - Limitation of RANSAC
 - Threshold parameter for inliers
 - Proposed method
 - Formulation as Laplace linear regression

Laplace $(\mathbf{v}|\mathbf{w}^T\mathbf{u}) \propto \exp(-|\mathbf{v} - \mathbf{w}^T\mathbf{u}|)$ Gaussian $(\mathbf{v}|\mathbf{w}^T\mathbf{u}) \propto \exp(-(\mathbf{v} - \mathbf{w}^T\mathbf{u})^2)$

(u, v): Input candidate pointsw: Parameters to be estimated

[Machine Learning: A Probabilistic Perspective]

• Estimation of Distribution Algorithm (EDA)

Objective function: $\arg \min_{x} f(x)$

- 1. Randomly generate *R* samples.
- 2. Calculate $f(x_i)$ of each sample, and sort the results.
- 3. Use the best *N* results to generate a PDF with normal distribution.
- 4. If stopping criterion is not met, use the PDF to generate new *R* samples, jump to 2.

In this example, R = 12, N = 6

- **Sample**: Projection matrix **P** formed by a set of 11 camera parameters
- **PDF**: 11-variate normal density function
- Stopping criterion: Changing ratio between generations smaller than threshold
- **Objective function**: Reprojection error (Distance between projected points and grid lines)

$$\mathbf{P}^{*} = \underset{\mathbf{P} \in \text{Rng}_{\mathbf{P}}}{\operatorname{arg min}} \mathbb{E} \left(d_{i,j}^{X} + d_{i,j}^{Y} \right)$$

s.t., $d_{i,j}^{X} = \left\| l_{j}^{X}, p_{i,j} \right\|_{2}, d_{i,j}^{Y} = \left\| l_{i}^{Y}, p_{i,j} \right\|_{2}$
52

- **PDF**: 3-variate normal density function
- Stopping criterion: Changing ratio between generations smaller than threshold

Objective function: Relative human height variance

$$\mathbf{x}^{*} = \underset{\mathbf{k}\in \operatorname{Rng}_{\mathbf{k}}}{\operatorname{arg\,min}} \operatorname{E}\left(\Delta H_{o,t}^{2}\right) \quad \text{s. t. , } \Delta H_{o,t} = \frac{H_{o,t} - \overline{H_{o}}}{\overline{H_{o}}}$$

 $\frac{H_{o,t}}{H_o}$: Estimated 3D height of object *o* at time *t* $\overline{H_o}$: Average 3D height of object *o* along time

Sec. # & Method	Δf	Δc_u	Δc_{v}	Δγ	Δβ	Δt_Z
Seq. # & Method	(pix.)	(pix.)	(pix.)	(deg.)	(deg.)	(mm)
1 - ESTHER	121.5	23.3	12.7	1.64	0.39	50
1 - Tang <i>et al.</i> , ICPR'16	124.6	19.2	16.0	1.82	1.17	78
1 - Brouwers et al., ECCV'16	179.0	43.9	14.8	1.14	0.22	62
1 - Liu et al., BMVC'11	347.0	43.9	14.8	N/A	N/A	N/A
1 - Liu et al., WACV'13	229.0	43.9	14.8	N/A	N/A	N/A
1 - Wu et al., ISVC'07	251.9	43.9	14.8	8.68	3.94	N/A
1 - Lv <i>et al.</i> , ICPR'02	382.7	43.9	14.8	15.01	5.47	N/A
2 - ESTHER	126.5	15.1	13.7	2.61	1.57	97
2 - Tang <i>et al.</i> , ICPR'16	126.8	19.0	11.2	2.90	1.18	115
2 - Brouwers et al., ECCV'16	265.0	41.2	18.0	0.27	0.33	790
2 - Wu et al., ISVC'07	362.0	41.2	18.0	6.45	2.64	N/A
2 - Lv <i>et al.</i> , ICPR'02	520.3	41.2	18.0	8.93	3.98	N/A
3 - ESTHER	11.5	4.5	2.9	2.78	2.07	116
3 - Tang <i>et al.</i> , ICPR'16	13.1	5.3	2.8	3.49	1.75	112
3 - Brouwers et al., ECCV'16	43.0	11.5	9.6	2.91	0.63	520
3 - Wu et al., ISVC'07	28.6	11.5	9.6	7.30	3.04	N/A
3 - Lv <i>et al.</i> , ICPR'02	34.6	11.5	9.6	11.69	2.07	N/A
4 - ESTHER	52.2	<i>13.</i> 8	6.0	2.46	1.45	294
4 - Tang <i>et al.</i> , ICPR'16	51.8	12.0	7.9	1.84	1.75	327
4 - Führ et al., TCSVT'14	52.0	59.8	5.4	N/A	N/A	N/A
4 - Wu et al., ISVC'07	60.5	59.8	5.4	2.77	1.92	N/A
4 - Lv et al., ICPR'02	89.6	59.8	5.4	7.56	3.29	N/A

 Calibration results on VPTZ, EPFL & MOTChallenge

[Possegger *et al.*, CVWW'12] [Fleuret *et al.*, TPAMI'08] [Leal-Taixé *et al.*, arXiv'15]

• Radial distortion correction results on VPTZ & MOTChallenge

Seq. # & Method	k_1	<i>k</i> ₂		
1 - Ground truth	-0.374	0.159		
1 - ESTHER	-0.383	0.176		
1 - ESTHER (MWA)	-0.346	0.119		
2 - Ground truth	-0.365	0.131		
2 - ESTHER	-0.327	0.117		
2 - ESTHER (MWA)	-0.479	0.198		
5 - Ground truth	-0.602	4.702		
5 - ESTHER	-0.595	4.730		
5 - ESTHER (MWA)	-0.579	4.685		

Line segments for MWA

\mathbf{W} university of washington

Camera Self-calibration

• Demonstration of tracking in 3D

Object tracking (in 2D)

Object tracking (in 3D) via camera self-calibration

Object segmentation (w/ region of interest)

Outline

- ESTHER: <u>Evolutionary Self-calibration from Tracking of Humans for</u> <u>Enhancing Robustness</u>
- MOANA: Modeling of Object Appearance by Normalized Adaptation
- **2EPOCH**: <u>Two</u>-step <u>Evolutionary Pose Optimization for Camera and Humans</u>
- Extension to multi-view 3D scene reconstruction

Adaptive Appearance Modeling Color Texture Edge

tracking 14 00 17 10 12 19

Adaptive appearance models

3D tracking (top view)

2D

• Construction of adaptive appearance model

Feature maps

Normalized feature maps

Segmentation masks

Adaptive appearance models along time

• Update of adaptive appearance model

• Cross-matching

i: Index for a target *j*: Index for an observation \mathcal{O}_i : Observation $\widehat{\mathcal{O}_i}$: Prediction from target P_i : Observed 3D location \widehat{P}_i : Predicted 3D location f_i : Appearance features of an observation **m**_{*i*}: Appearance model of a target

 \mathbf{W} university of washington

Adaptive Appearance Modeling

• Re-identification

i: Index for a target *j*: Index for an observation *t_i*: Current time t_i' : Disappeared time \mathcal{O}_i : Observation $\widehat{\mathcal{O}_i}$: Prediction from target P_i : Observed 3D location \widehat{P}_i : Predicted 3D location f_i : Appearance features of an observation \mathbf{m}_i : Appearance model of a target

• MOTChallenge 2015 3D benchmark [Leal-Taixé et al., arXiv'15]

Measure	Better	Perfect	Description
Avg Rank	\downarrow	1	This is the rank of each tracker averaged over all present evaluation measures.
MOTA	1	100 %	Multiple Object Tracking Accuracy. This measure combines three error sources: false positives, missed targets and identity switches.
MOTP	↑	100 %	Multiple Object Tracking Precision. The misalignment between the annotated and the predicted object locations.
MT	1	100 %	Mostly tracked targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at least 80% of their respective life span.
ML	↓	0 %	Mostly lost targets. The ratio of ground-truth trajectories that are covered by a track hypothesis for at most 20% of their respective life span.
FP	\downarrow	0	The total number of false positives.
FN	\downarrow	0	The total number of false negatives (missed targets).
ID Sw.	\downarrow	0	The total number of identity switches.
Frag	\downarrow	0	The total number of times a trajectory is fragmented (i.e. interrupted during tracking).
Hz	1	Inf.	Processing speed (in frames per second) on the benchmark.

\mathbf{W} university of washington

Adaptive Appearance Modeling

• MOTChallenge 2015 3D benchmark [Leal-Taixé et al., arXiv'15]

Tracker	Avg Rank	† <u>N</u>	ΙΟΤΑ	IDF1	MT	ML	FP	FN	JD Sw.	Frag	Hz	Detector
MOANA	3.2	52.7	±14.4	62.4	28.4%	22.0%	2,226	5,551	167 (2.5)	586 (8.8)	19.4	Public
1. 🖸 🗸						Z. Tang, J. H	wang. MOANA:	An online learne	d adaptive appearance model	for robust multiple object t	tracking in 3D.	In IEEE Access, 2019.
DBN 2. 🖸 🗸	3.4	51.1	±7.6	0.0	28.7 %	17.9%	2,077	5,746	380 (5.8)	418 (6.4)	0.1	Public
	T. Klinger, F. Rottensteiner, C. Heipke. Probabilistic Multi-Person Tracking using Dynamic Bayes Networks. In ISPRS Workshop on Image Sequence Analysis (ISA), 2015.											
GPDBN 3. 🖸 🗸	3.4	49.8	±6.6	0.0	25.7%	17.2%	1,813	6,300	311 (5.0)	386 (6.2)	0.1	Public
	T. Klinger, F. Rottensteiner, C. Heipke. Probabilistic multi-person localisation and tracking in image sequences. In ISPRS Journal of Photogrammetry and Remote Sensing, 2017.											
GustavHX 4. O	3.8	42.5	±0.2	45.0	25.7%	15.7%	2,735	6,623	302 (5.0)	431 (7.1)	0.0	Public
	Anonymous submission											
MCFPHD	4.8	39.9	±12.3	0.0	25.7%	16.8%	3,029	6,700	363 (6.0)	529 (8.8)	17.7	Public
5. 🖌	N. Wojke, D. Paulus. Global data association for the Probability Hypothesis Density filter using network flows. In 2016 IEEE International Conference on Robotics and Automation, ICRA, 2018.											
MCG	6.2	35.9	±7.5	31.9	8.2%	25.7%	1,600	8,464	692 (14.0)	1,017 (20.5)	0.1	Public
6. 🖌											4	Anonymous submission
LPSFM 7. ☑	5.2	35.9	±6.3	0.0	13.8%	21.6%	2,031	8,206	520 (10.2)	601 (11.8)	8.4	Public
	L. Leal-Taixé, G. Pons-Moll, B. Rosenhahn. Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker. In IEEE International Conference on Computer Vision Workshops (ICCVW). 1st Workshop on Modeling, Simulation and Visual Analysis of Large Crowds, 2011.											
LP3D 8. ₽	4.9	35.9	±11.1	0.0	20.9%	16.4%	3,588	6,593	580 (9.6)	659 (10.9)	83.5	Public
										MOT baseline: Linear pro	ogramming on	3D image coordinates.
<mark>.SVT</mark> 9. ☑	6.8	34.2	±15.2	0.0	11.2%	25.4%	3,057	7,454	532 (9.6)	611 (11.0)	1.9	Public
	Longyin Wen, Zhen Lei, Ming-Ching Chang, Honggang Qi, Siwei Lyu. Multi-Camera Multi-Target Tracking with Space-Time-View Hyper-graph. IJCV, 2018.											
AMIR3D	7.1	25.0	±10.8	0.0	3.0%	27.6%	2,038	9,084	1,462 (31.9)	1,647 (35.9)	1.2	Public
10. 🔘 🖉	A. Sadeghian, A. Alahi, S. Savarese. Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies. In ICCV, 2017.											
Kalman SFM	6.3	25.0	±8.5	0.0	6.7%	14.6 %	3,161	7,599	1,838 (33.6)	1,686 (30.8)	30.6	Public
11. 🔘 🖌						S. Pell	eorini, A. Ess. K	Schindler, L. G	ool. You'll never walk alone: M	odeling social behavior for	multi-target tr	acking., In ICCV, 2009.

• Demo on MOTChallenge 2015 3D benchmark

Public detections from Deformable Part Model [Felzenszwalb et al., CVPR'08] 68

• Demo on MOTChallenge 2015 3D benchmark

Public detections from Deformable Part Model [Felzenszwalb et al., CVPR'08] 69

Outline

- ESTHER: <u>Evolutionary Self-calibration from Tracking of Humans for</u> <u>Enhancing Robustness</u>
- MOANA: Modeling of Object Appearance by Normalized Adaptation
- **2EPOCH**: <u>Two</u>-step <u>Evolutionary Pose Optimization for Camera and Humans</u>
- Extension to multi-view 3D scene reconstruction

W UNIVERSITY of WASHINGTON

3D Pose Estimation

3D Pose Estimation

• 2D human pose estimation [Cao et al., CVPR'17]

• Visual odometry [Nistér *et al.*, CVPR'04]

• 3D pose estimation by two-step EDA

- 3D pose estimation by two-step EDA
- Sample : Root-relative 2500 2000 Sample : 6 camera depths of 18 joint N 1500 1000 parameters for 500 points rotation and 400 -200 **PDF**: 18-variate 0 200 translation 400 600 normal density function -500 **PDF**: 6-variate **Objective function**: normal density Step I Step II Weighted sum of function 1. Spatial constancy loss **Evolutionary 3D Objective function**: Evolutionary Temporal constancy 2. human pose Reprojection error of camera pose loss estimation estimation 18 joint points 3. Body "flatness" loss 4. Joint angle loss

• Root-relative depths for human pose optimization

• Spatial constancy for human pose optimization

[ArchieMD Inc.]

• Temporal constancy for human pose optimization

• Body flatness for human pose optimization

• Joint angle constraints for human pose optimization

• Reprojection error for camera pose optimization

• Demo on people with small movement [ArchieMD Inc.]

• Demo on people with large movement

• Demo of multi-object 3D pose estimation [YouTube]

Outline

- ESTHER: <u>Evolutionary Self-calibration from Tracking of Humans for</u> <u>Enhancing Robustness</u>
- MOANA: Modeling of Object Appearance by Normalized Adaptation
- **2EPOCH**: <u>Two</u>-step <u>Evolutionary Pose Optimization for Camera and Humans</u>
- Extension to multi-view 3D scene reconstruction

Multi-view 2D tracking 0 N 2 -10 -10

2D pose estimation

3D scene

reconstruction

3D tracking (top view)

- 2D tracking in each camera view
- Multi-view 3D tracking based on data association with visual and semantic attributes

• Cross-view tracking results on EPFL[Fleuret et al., TPAMI'08]

Method	MODA(%)	MODP(%)	MOTA(%)	MOTP(%)
Ours	61.04	73.13	60.26	72.26
Xu et al., CVPR'16	43.75	67.11	43.75	67.11
Berclaz et al., TPAMI'11	40.46	58.88	40.46	57.24
Fleuret et al., TPAMI'08	32.57	62.50	32.57	60.86

MODA (Multiple Object Detection Accuracy): The accuracy considering two error sources: false positives and false negatives/missed targets
MODP (Multiple Object Detection Precision): The precision of alignment between the annotated and the predicted bounding boxes MOTA (Multiple Object Tracking Accuracy):
The accuracy considering three error sources:
false positives, false negatives/missed targets
and identity switches
MOTP (Multiple Object Tracking Precision):
The precision of alignment between the
annotated and the predicted bounding boxes

• Demo for soccer analytics

Conclusion

- 3D scene reconstruction
 - Camera self-calibration from walking humans
 - Adaptive appearance modeling for 3D tracking
 - Two-step evolutionary 3D pose estimation
 - Multi-view scene reconstruction

Publications

- Journals
 - Z. Tang and J.-N. Hwang, "MOANA: An online learned adaptive appearance model for robust multiple object tracking in 3D," *IEEE Access*, vol. 7, no. 1, pp. 31934-31945, 2019.
 - Z. Tang, Y.-S. Lin, K.-H. Lee, J.-N. Hwang and J.-H. Chuang, "ESTHER: Joint camera self-calibration and automatic radial distortion correction from tracking of walking humans," *IEEE Access*, vol. 7, no. 1, pp. 10754-10766, 2019.
 - Y.-G. Lee, Z. Tang and J.-N. Hwang, "Online-learning-based human tracking across non-overlapping cameras," *IEEE TCSVT*, vol. 28, no. 10, pp. 2870-2883, 2018.

Publications

- Conferences
 - Z. Tang, M. Naphade, M.-Y. Liu, X. Yang, S. Birchfield, S. Wang, R. Kumar, D. Anastasiu and J.-N. Hwang, "CityFlow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification," in *Proc. CVPR*, 2019.
 - **Z. Tang**, R. Gu and J.-N. Hwang, "Joint multi-view people tracking and pose estimation for 3D scene reconstruction," in *Proc. ICME*, 2018.
 - Z. Tang, G. Wang, H. Xiao, A. Zheng and J.-N. Hwang, "Single-camera and inter-camera vehicle tracking and 3D speed estimation based on fusion of visual and semantic features," in *Proc. CVPR Workshops*, pp. 108-115, 2018.
 - Z. Tang, G. Wang, T. Liu, Y.-G. Lee, A. Jahn, X. Liu, X. He and J.-N. Hwang, "Multiple-kernel based vehicle tracking using 3D deformable model and camera self-calibration," *arXiv:1708.06831*, 2017.

Publications

- Conferences
 - Z. Tang, Y.-S. Lin, K.-H. Lee, J.-N. Hwang, J.-H. Chuang and Z. Fang, "Camera self-calibration from tracking of moving persons," in *Proc. ICPR*, pp. 260-265, 2016.
 - Z. Tang, J.-N. Hwang, Y.-S. Lin and J.-H. Chuang, "Multiple-kernel adaptive segmentation and tracking (MAST) for robust object tracking," in *Proc. ICASSP*, pp. 1115-1119, 2016.
 - Y.-G. Lee, **Z. Tang**, J.-N. Hwang and Z. Fang, "Inter-camera tracking based on fully unsupervised online learning," in *Proc. ICIP*, pp. 2607-2611, 2017.
 - T. Liu, Y. Liu, Z. Tang and J.-N. Hwang, "Adaptive ground plane estimation for moving camera-based 3D object tracking," in *Proc. MMSP*, 2017.
 - N. Wang, H. Du, Y. Liu, Z. Tang and J.-N. Hwang, "Self-calibration of traffic surveillance cameras based on moving vehicle appearance and 3-D vehicle modeling," in *Proc. ICIP*, pp. 3064-3068, 2018.

Honors

"Image Analysis and Machine Learning for Scene Understanding"

^{23rd.} INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION FINALIST BEST IBM TRACK 3 STUDENT PAPER AWARD

is hereby granted to:

Tang, Zheng; Lin, Yen-Shuo; Lee, Kuan-Hui; Hwang, Jenq-Neng; Chuang, Jen-Hui; Fang, Zhijun

for their participation in: **Camera Self-Calibration from Tracking of Moving Persons**

4-8 DEC 2016 CANCUN ICC CANCUN MEXICO

Prof. Eduardo Bayro-Corrochano General Chair ICPR2016 December 10, 2016

"Image Analysis and Machine Learning for Scene Understanding"

^{23rd.} INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION FINALIST BEST INTEL TRACK 3 STUDENT PAPER AWARD is hereby granted to:

Tang, Zheng; Lin, Yen-Shuo; Lee, Kuan-Hui; Hwang, Jenq-Neng; Chuang, Jen-Hui; Fang, Zhijun

for their participation in: **Camera Self-Calibration from Tracking of Moving Persons**

4-8 DEC 2016 CANCUN ICC CANCUN MEXICO

Prof. Eduardo Bavro-Corrochano General Chair ICPR2016 December 10, 2016

Honors

Honors

Acknowledgement

- Advisor: Prof. Jenq-Neng Hwang
- Committee members
 - Prof. Shapiro, Prof. Sun, Prof. Luo, and Prof. Bube
- IPL lab mates, colleagues and co-authors
- Companies for internship and research funding agencies
 - NVIDIA Corp., ArchieMD Inc., Mr. Wanhai Cui, Prism Skylabs, and Madrona Venture Labs
- Family, friends, and Jesus

Thank You! Q & A